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Abstract

Due to the rapid increase of elderly population worldwide, cost-effective long-term care
for seniors remains a daunting healthcare challenge yet to be resolved. As the shortage
of traditional care resources arises, smart senior homes provide alternatives for monitoring
elderly in home environments continuously and improving the well-being of seniors liv-
ing independently. Non-intrusive and cost-effective sensors facilitate the discovery of the
patterns in seniors’ activities of daily living. However, an automated, privacy-preserving
system for monitoring and analyzing gait has been long-awaited. Possible approaches to
implement such a system involve using smartphones or wearing sensors, but these methods
can be intrusive in that they requires adherence by seniors. In this paper, via a dataset
collected from an assisted-living facility for seniors, we present a novel computer vision-
based approach that uses non-intrusive, privacy-compliant depth sensors to continuously
assess seniors’ mobility and provide the corresponding long-term quantitative gait ana-
lytics. This analytics includes both qualitative and quantitative descriptions of walking
patterns, which can provide caregivers valuable clues regarding seniors’ health condition.
We also assess the seniors’ real-time locomotion by gait time to mimic Timed Up and Go
(TUG) or walking tests which can provide clinically relevant evaluation and the early stage
disease diagnosis. Our work is advancement towards a smart senior home that leverages
ambient intelligence to support caregivers to help meet the healthcare challenges of an
aging worldwide population.

1. Introduction

Many nations are experiencing substantial changes in the age structures of populations. In
the United States, demographic projections portend an extraordinary rise in numbers of
persons 65 years and older, placing increasing strain on healthcare services (Kinsella and
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Figure 1: Pipeline of our system. Given a continuous video, we first extract the walking
activity using an action detection model. Second, we train a depth pose estimator
using pre-trained human pose estimation model OpenPose (Cao et al. [2017]) as
initialization to re-train on public depth image dataset, then apply the trained
estimator to extract the 3D joint locations of the seniors from recorded depth
images. Finally, we detect steps based on poses and calculate clinically important
gait parameters.

Velkoff [2001]). The global population of older persons - those aged 60 years or over - is ex-
pected to increase from 962 million to 1.4 billion in 2030, 2.1 billion in 2050, and potentially
to 3.1 billion in 2100 (DESA [2017]). Despite an aging population that continues to grow,
however, support for geriatric medicine and healthcare is becoming more tenuous (Butler
[1997], for Disease Control et al. [2003]). It is estimated that the average number of poten-
tial caregivers per senior will drop from 7 in 2010 to 4 in 2030, and further fall below 3 in
2050, implying resultant challenges to quality elder care. (Redfoot et al. [2013]). The aging
of the population also causes increased outlays for Social Security and Medicare, underlying
significant societal impact. The Congressional Budget office projects the spending of major
health care programs such as Medicare and Medicaid to grow from 5.2% of the U.S. GDP
in 2018 to 9.2% in 2048 (Office [2018]). Concerns regarding capacity constraints for senior
care is not limited to the the United States; even nations with vastly different healthcare
systems, such as Japan and Great Britain, are experiencing a rapid rise in the cost for their
elder healthcare systems (Akiyama et al. [2018]; Schneider and Guralnik [1990]). Therefore,
it is crucial to establish cost-effective and quality long-term care for seniors worldwide.

In an effort to assist caregivers, there have been an increasing number of inventions
around smart senior homes, where the elderly can be monitored with intelligent devices.
These technologies not only enable frail seniors to remain safely independent in a more
sustainable fashion, but can also continuously monitor their health status to preemptively
assess disease risk (Courtney [2008]; Demiris et al. [2008]; Luo et al. [2018]). While most
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of the current senior care models have depended heavily on in-person care, many intelli-
gent home projects have been initiated to assist the elderly without limiting or disturbing
their daily routine, providing greater comfort, independence, and quality of life (Chan et al.
[2008]). Data collected by the intelligent systems that monitor the seniors’ key activities and
track their physical well-being provide valuable clues of acute health declines. Specifically,
gait assessment in home environments has recently become of increasing interest and can
help identify a high risk of fall, as well as gauge the stage of some diseases. One approach to
implement such a system is to use wearable devices to capture the various signals that char-
acterize the human gait. However, this approach requires seniors to wear dedicated sensors
such as accelerometers, gyroscopic sensors, etc. on several parts of the body throughout
the day, which can be cumbersome or intrusive, and there has been limited success in cal-
culating the paths and distances travelled accurately (Muro-De-La-Herran et al. [2014]; Liu
et al. [2009]; Tong and Granat [1999]).

Video acquisition provides a non-intrusive alternative to wearable sensors for automated
monitoring of seniors’ mobility and gait patterns. Recent advances in computer vision have
gained progress in analysis of human activity from video data (Wang et al. [2012]; Simonyan
and Zisserman [2014]; Karpathy et al. [2014]; Ji et al. [2013]). These techniques allow us to
to track individuals, recognize human behaviors, and detect unusual activities in an effective
and passive manner. Though these are promising, computer vision-based descriptive ana-
lytics of seniors’ daily activities using privacy-protected sensor data for clinically relevant
evaluation remains a major challenge. Gait characterization is a widely-investigated field
which provides useful information for multiple health-related applications such as rehabili-
tation, and diagnosis of medical condition Perry et al. [1992]. Gait deficits have served as
an indicator of diseases such as dementia, progressive supranuclear palsy and Parkinsons
disease (McIntosh et al. [1997]; Williams et al. [2007]; Verghese et al. [2002]). In cases
where a senior has a neurodegenerative disease such as dementia, constant evaluation of
gait-related metrics to identify markers of preclinical dementia may lead to new insights
into early disease stages. Therefore, it is essential to construct an ambient vision-based gait
characterization framework to enhance diagnostic assessments and discover new preventive
strategies. Prior works for vision-based gait characterization have various limitations, such
as extracting poses with privacy-violating RGB camera (Mehta et al. [2017]) or analyzing
gait patterns with young and healthy individuals’ video (Stone and Skubic [2011]), which
make them not suitable for the senior home environment. To our knowledge, a non-intrusive
and privacy-compliant vision-based system for continuous elderly mobility monitoring and
automatic gait analysis in daily senior home environment has not been developed prior to
our work.

In this work, we introduce a system that uses computer vision to automatically ana-
lyze seniors’ long-term gait patterns using sensor data collected from a single depth camera
placed within the home in a privacy-compliant manner. A schematic of our system imple-
mentation for gait analysis in an assisted-living facility for seniors is illustrated in Figure 1.
Firstly, we acquire Activities of Daily Living (ADL) data of seniors via easy-to-install and
privacy-preserving sensors in seniors’ rooms (Figure 1a). Secondly, we extract the walking
activity sequences using an action detection model. Thirdly, we deploy a pose estimation
model to extract the skeletal joint locations from depth video of the seniors. Finally, we
perform gait characterization for quantitative long-term gait analytics of the seniors. We
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show that we are able to achieve accurate clinically relevant gait parameter estimation that
may offer valuable information regarding the seniors’ health condition.

Here we showcase a real-world implementation and its efficacy of an automated, non-
intrusive, and privacy-compliant vision-based system for continuous monitoring of seniors’
walking activity and gait characterization. Notably, our system is privacy preserving and
easy to implement as it only requires a single depth camera installed at the seniors home.
Furthermore, this system can be incorporated in any smart system to help medical profes-
sionals assess the long-term gait of seniors and obtain clinically-relevant indicators of the
seniors’ health.

Technical Significance. We propose an automated, privacy-preserving, and non-intrusive
sensing system that fits well in home care settings as well as a vision-based algorithm to con-
duct gait analysis over long-term monitoring. For gait analysis, we detect walking sequences
using an action detection model, and then we train a state-of-the-art Convolutional Neural
Networks-based model to effectively and accurately detect human joints (human pose esti-
mation) from depth images alone, instead of RGB-D images as in previous works. Finally,
we detect walking steps given detected pose sequences and further estimate various gait
parameters to generate useful gait analysis.

Clinical Relevance. We propose an automated low-cost daily monitoring system to be
employed in ordinary senior homes for long-term recording and analysis of seniors’ gait pa-
rameters, which otherwise must be tested specifically in complicated hospital or laboratory
settings. The long-term gait analysis generated by our system can enable better under-
standing of normal and abnormal gait statistics, and hence possibly help identify potential
health problems, e.g. evaluate fall risks.

2. Cohort

We conduct this study in an assisted living facility for seniors, where sensors are deployed
upon each participants consent. We deploy a depth sensing setup to identify and assess
their gait in privacy-preserving manner. In addition, we simulate a test walking dataset in
an effort to evaluate our pose estimation and gait analysis algorithm with annotated ground
truth gait parameters since the senior home dataset did not record these.

2.1. Daily Senior Home Monitoring

Visual sensing with RGB-D cameras that are commonly utilized for computer vision tasks
can raise privacy concerns in home care settings due to the presence of highly identifiable
data. In contrast, depth-sensing technology provides precise measurement of the environ-
ment without revealing the individual’s identity. Depth sensors capture range information
where pixel values in the image correspond to a calibrated distance between objects and
the sensor. Depth images offer several benefits over RGB: they are robust to the change
in illumination conditions, color, and background complexity, and they carry rich 3D in-
formation of a scene in a simple way. Person localization using depth sensors like Kinect
enable effective monitoring without compromising privacy to a large extent, and this has
motivated the use of such sensors in various healthcare settings (Ghose et al. [2013], Haque
et al. [2017]).
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Figure 2: Examples of depth images color-coded for better visualization. Our framework

utilizes privacy-compliant depth signals to detect and monitor senior mobility
and walking patterns.

In particular, we deploy a depth sensing setup where an ASUS Xtion PRO depth sensor
is mounted near the ceiling of a senior home room, with a 45° downward viewing angle. The
depth sensor records images at 240 x 320 resolution and 30 frames per second (FPS), with
distance range of 0.4 to 4.5 meters. Figure 2 illustrates the sample images provided by depth
sensors, demonstrating how a depth sensor can represent accurate localization of people in
complex indoor environments. We collected a dataset of depth video in several senior home
rooms over the course of 1 month, using our visual sensing setup. Following depth video
collection, we annotated the dataset with 6 types of daily living activities including sleeping,
sitting, standing, walking, using bedside commode, and getting assistance from a caregiver,
for training action detection model. For the purpose of this paper, we utilize the depth data
in the walking category.

2.2. Simulation Test Data

Since the senior home dataset does not provide any ground truth gait parameters, we
propose to record another test dataset to evaluate our algorithm’s accuracy. We construct
the test dataset of both depth and RGB videos in a lab environment using a depth sensing
setup similar to that in the senior home room, where ASUS Xtion PRO depth sensors are
mounted near the ceiling, with a 45° downward viewing angle at 8 locations. The vertical
distances from the camera to the floor during capture are about 2 meters. The resolutions
of both RGB and depth data are 240 x 320 in pixel. Both sequences are synchronized and
the frame rates are 30 FPS. The depth sensor records images with distance range of 0.4 to
4.5 meters. We perform the camera calibration procedure at the beginning of video capture
session and the cameras are fixed at all 8 locations.

We invited six students - three male and three female volunteers to perform the walking
activity and recorded by the sensors at 8 different locations. Figure 3 displays the layout of
the depth sensors along with the approximate location of the walking paths used to obtain
gait parameters. The subjects are asked to perform walking along the path under each sensor
location. Finally, we capture approximately 5,000 frames for a total of 48 video samples.
Each video sample spans about 3 to 10 seconds. Two example frames are illustrated in
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Figure 3: Approximate positions of depth cameras, and walking path in laboratory envi-
ronment.
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Figure 4: Examples of aligned depth modality (left) and RGB modality (right). The depth
image is color-coded for better visualization. The distance travelled by the vol-
unteer is annotated by markers on the floor.

Figure 4, including the depth modality (left) and RGB counterpart (right). The background
environment of the scene is varied at different camera locations to simulate the indoor home
setting. In addition, to obtain ground truth gait parameters, we visually identify each step
in each video sample, and the step length and total distance travelled in depth video can
be measured and visually validated by the floor markers in RGB counterparts. Then other
gait parameters can be calculated accordingly.

3. Methods

As shown in Figure 1, the pipeline of our system to achieve gait analysis from depth images
consists of four major steps. Given a continuous recording of a senior’s daily living in depth
modality, the first step is to extract clips of the senior walking with an action detection
model. The second step is to train a human pose estimation model and apply the estimator
to the extracted clips to obtain pose sequences of the seniors. The third and fourth steps
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of our pipeline involve running our gait analysis algorithm on the pose sequences to detect
walking steps and calculate gait parameters accordingly. In subsequent sections, we will
discuss the details of walking detection, pose estimation from depth, step detection, and
gait analysis respectively.

3.1. Walking Detection

To extract walking sequences from continuous videos, we apply temporal action detection
models that have been well explored in computer vision literature. Formally, given a video
sequence V = {V1, Vs, ..., Vp} where V;,i € {1,...,T} denotes a frame at time 7, the action
detection model extract all video segments {V,,...,V},} corresponding to certain classes
and predict the class labels. Here (z;,y;) denotes the start/end index of the i-th segment.
In this paper we use the model to extract video segments corresponding to the walking
class.

For the trainig of the detection model, we follow the same procedure as in Luo et al.
[2018]. We train the model using our temporally annotated senior home dataset that has
six action classes. During test time we apply our model to detect and extract only the
walking class for later processing.

3.2. Pose Estimation from Depth Images

Given the extracted video frames of the walking activity, we train a pose estimation model
to get the skeletal joint locations of the senior in each frame. Formally, our system p :
Rw*xh 5 RwxhxJ takes as input a depth image I of size wx h, and outputs 2D locations of all
keypoints, which are represented as a set of joint heat maps S. The set S = {S1, So, ..., S}
contains J heat maps, one for each joint, and S; € R¥*" for all j € {1,...,J} is a 2D
representation of the probability that a particular joint occurs at each pixel location.

To train on our depth image datset, we first convert our ground truth joint locations
into the same form. Let l; € R% (}; = (xa;,72j41)) be the 2D ground truth position for
joint j. The value at location p € R? in the ground truth heat map S5 is then defined as,

— 1 2
Si(p) = exp (—W) (1)

g

where o controls the variance. Then we train the network in a supervised fashion, where
the loss function is defined as the Mean-Square-Error (MSE) between the predicted and
ground truth joint heatmaps:

L= > lISjm) —Simll (2)
p

j=1

where S;,j € {1, ..., J} is the output of our network p, i.e S = p(I).

To train this model, we utilize pre-trained pose estimation model OpenPose (Cao et al.
[2017]) trained on large-scale RGB datasets as our initialization and continue training using
depth images with human joint annotations from CAD-120 dataset (Koppula et al. [2012]).
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Figure 5: Our gait analysis algorithm: (a) Extract the 3D feet locations in each frame, (b)
calculate the L2 distance between the two feet, (c¢) apply smoothing to remove
false positives, and finally (d) locate the extrema in the curve. (e) In the rare case
where the d; curve has false local extrema even after smoothing, (f) we identify
the true extrema after false positive removal.

Moreover, as a post-processing step, we remove false positives with temporal smoothing

among all candidates:
t+k

ye = argmin Y [|gi — Gl (3)
g
i=t—k
where y; is the final joint location collection of a person for time ¢, ¢ is a collection selected
from all person candidates, and k is the window size.
Finally, with a proper transformation using the extrinsic and intrinsic camera matrix,
we can calculate the 3D joint locations in the video.

Implementation Details We use the network architecture of OpenPose (Cao et al.
[2017]), with VGG-Net Simonyan and Zisserman [2015] backbone. We normalize the in-
puts by the mean and standard deviation required by VGG-Net (Simonyan and Zisserman
[2015]), which are (0.485,0.456,0.406) and (0.229,0.224,0.225) for BGR channels respec-
tively. . For data augmentation, we only use random horizontal flipping. We initialize our
network with pre-trained OpenPose weights, then train the model using SGD for 40 epochs
with batch size 48, momentum 0.9 and weight decay 5 x 10™%. Our initial learning rate is
0.001, and we decay the learning rate by a factor of 10 at epoch 20 and 30.



VISION-BASED GAIT ANALYSIS FOR SENIOR HOMES

3.3. Step Detection

Once we have the sequence of joint locations of T' frames, we use the feet locations across
time to perform gait analysis. Figure 5 shows the pipeline of our step detection approach.
Figure 5a shows the horizontal displacement from the origin of the left and right foot,
(It, )| ;. Next, we calculate the Euclidean distance between the two feet, d; = ||l; — 7¢||2.
As shown in Figure 5b, this forms a periodic pattern across time. When a person swings a
foot forward to take a step, the distance between the feet first decreases and then increases.
Thus, the local maxima in the curve indicate the points when the two feet are wide apart,
which correspond to the steps. However, due to the gait pattern and the errors in pose
estimation, the feet distance dy may not be smooth, resulting in false local extrema. Thus,
we first apply a convolution smoothing with a uniform kernel to get a smoothed curve d;.
Figure 5¢ shows the curve after smoothing, in which some false extrema are removed while
the correct ones are preserved. Finally, as shown in Figure 5d, we determine the correct

extrema mq, ny, mo, No, ..., where m;, n; refer to the maxima and minima, respectively. Since
a step occurs when the feet are farthest apart, the maxima m; indicate when each step
happens.

We observe that the above algorithm works well in practice for most video sequences.
However, in some extreme cases, the distance between feet curve still contains false extrema
even after smoothing. Therefore, we design an algorithm to remove them. First, we calculate
the range of the extrema, r = max; m; — min; n; . Then, we determine a threshold 6 = ar,
where o < 1. For any pair of consecutive extrema, if the difference is smaller than the
threshold #, we remove that pair. Figure 5e shows a rare example where the smoothed d;
curve still contains false local extrema, and Figure 5f shows that the algorithm can remove
the false positives and obtain the correct ones.

3.4. Gait Analysis

Following our step detection methodology above, we can calculate the following medically
relevant gait parameters: step length, stride length, swing time, frequency and gait speed,
as previously defined in literature Muro-De-La-Herran et al. [2014]. Each local maximum
m; corresponds to each step, and each local minimum n; occurs between steps when the
feet are next to each other. We determine step length di1 by the projected distance when at
local maximum, stride length d? by the distance between two successive placements of the
same foot, and swing time t; by the time difference between two maximum. Finally, gait
speed v is calculated by the sum of the stride length divided over the total time, to account
for the case when the senior does not walk in a straight line.

Formally,
dl-1 = \/mlz — n?
@ = \fm2 —n? 4 \fm2, —n?
ti = (fiv1 — fi)/ fps

> d}
(fn — f1)/fps

v =
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Table 1: Quantitative Evaluation of Our Method. We calculate L1 errors (both mean and
standard deviation) for various gait parameters. The measure units used for each
parameter are shown in parentheses.

Step L1 Step length (cm) Stride length (cm) Swing time (ms) Frequency Speed (m/s)
0.21 £ 0.73 3.15 £ 2.17 4.74 + 3.67 38.1 £ 30.0 0.24 + 0.22 0.067 £ 0.060

Table 2: Quantitative Comparison with Other Methods. We compare L1 error of various
gait parameters for each method, in terms of both absolute error and error per-
centage. “-” indicates that the number is unavailable in their reported results. The
comparison shows our accuracy is comparable to other state-of-the-art methods.

“Dubois 2014”7 “Rocha 2018” Ours
Step L1 ms - 20.6 + 20.3 7.0 + 24.3
cm - 27 + 94 3.2 + 2.2
Step length "o/ 155 | 196 - 6.3 + 4.3
. cm - 5.5 + 4.0 47 + 36
Stride length % i i 46435
Swine time ™8 ] 180 + 15.6  38.1 + 30.0
& % 115 + 8.3 - 9.9 + 8.7
Soeed m/s _ 0.029 4+ 0.024  0.067 + 0.060
P % 10.0 + 7.3 - 72+ 7.8

where f; is the frame number index for m;, fps is frames-per-second, and N is the total
number of maxima found.

4. Results

The following sections first describe the quantitative results and comparisons evaluated on
our simulation test dataset to illustrate the accuracy of our method. Then we present a com-
prehensive descriptive analytics obtained by applying our method on our real-world senior
home dataset to demonstrate our system’s capability to provide long-term gait monitoring
and analysis.

4.1. Evaluation on Simulation Test Data

Evaluation Metrics. As the ground truth gait parameters are annotated during our
simulation test data collection, our evaluation then compares our estimated parameters
against the ground truth via L1 error. Specifically, for step detection accuracy (denoted
“Step L17), we calculate the L1 distances between each annotated time step and the closest
detected step, and then average over all steps from all videos. “Step length” and “stride

10
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length” calculate the average of L1 distances between the ground truth step/stride length
of each step and its corresponding estimated step/stride length in ¢m, and “swing time” the
L1 distances to ground truth swing time in ms. “Frequency” is defined as the total number
of steps in a video divided by its duration, and “speed” is defined as the total distance
traveled (sum of step lengths) in a video divided by its duration.

Quantitative Results. Table 1 shows the quantitative error measurements for each gait
parameter. We can see from the table that the accuracy is quite good since the distance
errors are on the magnitude of several centimeters.

We also show quantitative comparisons with other vision-based gait analysis systems in
Table 2. Here we compare with two recent methods “Dubois 2014” (Dubois and Charpillet
[2014]) and “Rocha 2018” (Rocha et al. [2018]). For methods that do not provide error per-
centages, we assume the ground truth values are similar and directly compare the absolute
errors. In this way, we can still compare and understand the magnitude of our error.

By evaluating the errors, we can see that our method achieves errors comparable to
other state-of-the-art methods (sometimes better), while only requiring single depth images
alone instead of RGB-D images.

4.2. Descriptive Analytics on Real-World Data.

We apply our algorithm on our unlabeled real-world senior home dataset, and provide
quantitative descriptive analytics of the seniors’ gait statistics. These quantitative analytics
can reliably provide useful clinical information to be interpreted by a caregiver.

Gait Statistics. First we calculate the gait statistics (namely step length, swing time,
frequency and gait speed) of three randomly chosen subjects over a week as an illustration.
Note that we do not calculate stride length here because stride lengths are the same as step
lengths in the way our seniors move, i.e. only one foot moves forward and the other foot
follows rather than two feet move forward alternately.

The results are shown in Table 3, where we can see a summary of gait statistics (both
mean and standard deviation) for each subject over one week’s time. The calculated statis-
tics is consistent with typical senior mobility, e.g. step length of around 20 cm. We can then
further analyze each subject’s gait characteristics given the recorded profiles. For example,
we can infer from the table that subject 2 has a lower swing time and a higher frequency
than subject 1, which implies subject 2 moves legs faster. We can also see that subject 3
(compared with 1 and 2) has a much lower swing time and higher frequency, resulting in a
much faster moving speed.

Monitoring Changes. In this section, we show how our system can help monitor the
gait parameter changes over a long period of time. As shown in Figure 6, we plot the gait
parameter changes for step length, swing time frequency and gait speed, over one week’s
time monitored by our system. We show the results for subject 1. We can see in the figures
that the statistics vary from day to day (for example, on the fourth day the swing time is
shorter while the frequency and speed is higher, i.e. the subject moves faster, which may
indicate the subject was in good mental and physical condition), but are maintained in a
small fluctuation range.

11
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Table 3: Gait Statistics Summary over One Week. We show the average statistics (both
mean and standard deviation) over one week for all three subjects. These gait
profiles may help keep track of the subjects’ health conditions.

Subject Step length (cm) Swing time (s) Frequency Speed (m/s)

1 23.16 = 7.27 1.77 £ 0.70 0.71 £ 0.27 0.26 £ 0.09
2 22.66 + 4.11 1.68 £ 0.65 0.72 £0.29 0.27 £ 0.10
3 2153 £ 1.14 1.25 4+ 0.50 0.95 £ 0.38 0.33 £ 0.07
0d0 Step Length Change across Time 20 Swing Time Change across Time
:? 025 é’ "__*'H‘_ﬂ
i 1 2 3 D:ys 5 6 7 1 2 3 D:ys 5 6 7
15 Frequency Change across Time 050 Gait Speed Change across Time
é-i_ '__‘_4 ?g.’- 0.30
1 2 3 D:ys 5 6 7 1 2 3 D:ys 5 6 7

Figure 6: Gait parameter changes over time. The red dots denote the means of the pa-
rameters every day, while the black bars denote the standard deviations of the
parameters every day. The curves indicate the trend of the change.

These results allows caregivers to easily observe changes over time and potentially iden-
tify anomalous mobility changes, e.g. sudden drop in step length showing decrease in senior’s
daily movement, which may indicate health decline or symptoms of certain disease.

12
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Table 4: Daily Gait Time Summary over One Week. We show the average gait time over
one week in each scenario. The statistics may serve as an indicator of the subject’s
mobility status.

Subject From bed to door (s) From bed to desk (s)

1 17.0 £ 3.6 23.3 £ 4.0
2 18.1 £5.1 228 £ 3.3
3 20.6 =+ 3.4 25.6 £ 2.2

Adapted Standard Test. In addition to the gait statistics calculation above, we also
propose and provide some standard gait analysis metrics (e.g. Timed-Up-and-Go), that are
normally measured in hospital /laboratory settings, adapted to our daily monitoring setting.

We propose Daily Gait Time, analogous to “gait time” in laboratory test context (Freter
and Fruchter [2000]). For this metric, we just measure the time that the subject spend
in daily movements to walk from one fixed location to another, and these locations are
chosen such that the corresponding walking sequences occur with high frequency. For our
experiment here, we use walking “from bed to door” and “from bed to desk”.

We show our estimated Daily Gait Time in Table 4, where both means and standard
deviations over one week are calculated. These statistics can help monitor long-term mo-
bility status for walking along a fixed distance, which may provide medical insights on the
senior’s health condition.

5. Discussion and Related Work

In this era where aging societies are becoming a reality, smart senior homes have started
to gain increasing interest as more elderly people desire to live independently (Wiles et al.
[2012]). A number of intelligent homes have been equipped with various sensors to accommo-
date people who need special care, especially elderly individuals (Demiris et al. [2008]; Elger
and Furugren [1998]). However, most of these approaches require installation of multiple
sensors, each of which associate with specific applications and raise concerns about privacy.
Recently, a privacy-preserving and non-intrusive system has shown promise in detecting ac-
tivities of daily living from a single camera, providing an efficient way to monitoring health
conditions of seniors (Luo et al. [2018]).

Some of the existing approaches using wearable device-based systems for gait measure-
ment and analysis can provide detailed statistics of a person’s stride length, velocity, and
swing time, but they require subjects to wear different types of motion senors and systems
throughout the clinic session often when they are being attended in person (Muro-De-La-
Herran et al. [2014]). A few related works propose to use low cost devices, such as attaching
small sensors on mobile devices to extract pose information (Bao and Intille [2004]; Unuma
et al. [2004]). However, a high degree of accuracy can only be achieved with certain style of
carrying the cell phone, which raises feasibility concerns for activity monitoring of elderly
individuals. Above all, most previous work on gait analysis can only be performed over a
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short period of time, giving biased evaluations and not capturing the long-term gait pattern
(Muro-De-La-Herran et al. [2014]). A number of vision-based approaches have also been
developed for automated gait monitoring, many of which lack adaption to gait variety and
uses privacy-violating RGB videos or simulated data (Cheng et al. [2014]). While these
methods are an important development for gait characterization, they have not focused on
detecting gait deviations from normal patterns in the senior home environment.

The Timed-Up-and-Go (TUG) test and its variants have been commonly used to mea-
sure the physical and functional mobility of frail older adults, and to help identify those who
are prone to falls (Shumway-Cook et al. [2000]). Despite its ubiquity in clinical assessment of
balance and mobility, TUG has its own limitations such that it only examines a senior’s fall
risk at a particular point in time. In addition, clinical tests of mobility are usually performed
in laboratory, and are not realistic to be adapted to the senior home setting. Therefore,
effective long-term monitoring paves a novel way for reliable characterization of gait, and
allows medical professionals to track seniors’ mobility over time (Muro-De-La-Herran et al.
[2014)).

Our paper therefore implements an automated, vision-based, and privacy-preserving
system that accurately monitors clinically-relevant walking patterns of seniors. We exper-
iment on depth sensor data from a realistic senior home environment and a simulation
walking test dataset in both depth and RGB modalities. In addition, our model achieves
excellent results on gait characterization compared to other state-of-the-art algorithms of
mobility assessment while using fewer input signals. Furthermore, we have provided in-
terpretable quantitative descriptive analytics of the senior’s walking pattern over a long
period. These analytics can enhances safety of senior residents, and allow caregivers and
medical professionals to more efficiently identify patterns of abnormal activity that might
be representative of health concerns.
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